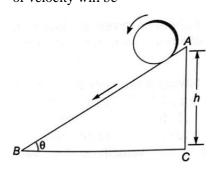


Max Marks: 100 ABHIMANYU BATCH PHYSICS: REVISION TEST-2 (SET B)


Topic: Wave Optics + Rotational Motion + Elasticity

1.	If the	earth suddenly	y changes its r	adius x time	es the present value	, the new	period of rotation	would be
	(a)	$6x^2h$	(b)	$12x^2h$	(c)	$24x^2h$	(d)	$48x^2h$

- 2. A wheel of mass 8 kg and radius 40 cm is rolling on a horizontal road with angular velocity of 15 rad s⁻¹. The moment of inertial of the wheel about its axis is 0.64 kg m⁻². Total kinetic energy of wheel is
 - (a) 288 J
- (b) 216 J
- (c) 72 J
- (d) 144 J

Date: 00.00.2022

- 3. A sphere and a hollow cylinder roll without slipping down two separate inclined planes and travel the same distance in the same time. If the angle of the plane down which the sphere rolls is 30°, the angle of the other plane is
 - (a) 60°
- (b) 53°
- (c) 37°
- (d) 45°
- 4. A solid cylinder rolls down an inclined plane of height 3 m and reaches the bottom of plane with angular velocity, of $2\sqrt{2}$ rad s⁻¹. The radius of cylinder must be (Given, $g = 10 \text{ ms}^{-2}$)
 - (a) 5 cm
- (b) 0.5 cm
- (c) $\sqrt{10}$ cm
- (d) $\sqrt{5}$ m
- 5. If a sphere rolling on an inclined plane with velocity v without slipping, the vertical height of the incline in terms of velocity will be

- (a) $\frac{7v}{10g}$
- (b) $\frac{7v}{10}$
- (c) $\frac{2v^2}{5g}$
- (d) $\frac{3v}{5g}$

6.

(a)

g/3

7.		peed of a homoge ut sliding is	nous sol	lid sphere after rollin	ng dowi	n an inclined plane	of vertic	al height h from rest
	(a)	$\sqrt{\frac{10}{7}gh}$	(b)	$\sqrt{\frac{4}{3}gh}$	(c)	$\sqrt{\mathrm{gh}}$	(d)	$\sqrt{\frac{6}{5}gh}$
8.	The fo	ollowing four wire	s of leng	th L and radius r are	made o	of the same material	Which	of these will have the
	larges	t extension, when the	he same	tension is applied?				
	(a)	L = 100 cm, r = 0			(b)	L = 200 cm, r = 0.		
	(c)	L = 300 cm, r = 0	0.6 mm		(d)	L = 400 cm, r = 0.	8 mm	
9.	A sph	ere of radius 3 cm	is subje	cted to a pressure of	100 atn	n. Its volume decreas	ses by 0.	3 cc. What will be its
	bulk n	nodulus?						
	(a)	$4\pi\times10^5~atm$	(b)	$4\pi\times3\times10^3$ atm	(c)	$4\pi\times10^6$ atm	(d)	$4\pi\times10^8$ atm
10.	To bro	eak a wire of 1 m le	ength, m	inimum 40 kg weight	s is requ	nired. Then, the wire	of the sa	me material of double
	radius	and 6 m length wi	ll require	breaking weight				
	(a)	80 kg-weight	(b)	240 kg-weight	(c)	200 kg-weight	(d)	160 kg-weight
11.	When	a weight of 10 kg	is susper	nded from a copper w	rire of le	ngth 3 m and diamet	er 0.4 m	m. Its length increases
	by 2.4	cm. If the diamete	r of the v	wire is doubled, then	the exter	nsion in its length wi	ll be	
	(a)	7.6 cm	(b)	4.8 cm	(c)	1.2 cm	(d)	0.6 cm
12.			-	•		• •		3×10^3 kg m ⁻³ . If the ould be (Given, $g = 10$
	(a)	20 m	(b)	200 m	(c)	100 m	(d)	2000 m
13.	The le	ength of the wire is	increase	ed by 2% by applying	g a load	of 2.5 kg-wt. What	is the lin	ear strain produced in
	the wi	re?						
	(a)	0.1	(b)	0.01	(c)	0.2	(d)	0.02
				Space for Ro	ugh Wo	<u>rk</u>		

A cylinder is rolling down on an inclined plane of inclination 60°. What is its acceleration?

(d)

None of these

 $g/\sqrt{3}$

(b)

5:2

(b)

2:5

(a)

earning	with the	Speed of Mumbai and	a ine 1rac	iiiion oj Koia				
14.	A wire	is suspended by o	ne end.	At the other end, a w	eight equ	uivalent to 20 N force	is appli	ed. If the increase in
	length	is 1 mm, then incre	ease in th	ne energy of the wire	will be			
	(a)	0.01 J	(b)	0.02 J	(c)	0.04 J	(d)	1.00 J
15.	Young	's modulus of the	material	of a wire is Y. On p	ulling the	e wire by a force F, t	he increa	ase in its length is x.

(u)	2	2	2	(a) Trone of these	
			1 2 1 1 1	If $V = 2 \times 10^{11} \text{ Nm}^{-2}$ then the rule	

16.	A 1 m	long steel	wire of cros	s-sectional	l area 1	mm ² i	is extende	ed by 1 m	m. If $Y =$	$= 2 \times 10^{11}$	Nm^{-2} , the	en the	work
	done i	s											
	(a)	0.1 J	(b)	0.2 J			(c)	0.3 J		(d)	0.4 J		

(c)

1:3

(d)

3:1

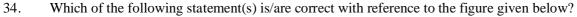
- 18. If in a wire of Young's modulus Y, longitudinal strain X is produced, then the value of potential energy stored in its unit volume will be
 - 0.5 YX^2 $0.5 Y^2X$ $2YX^2$ YX^2 (b) (d) (a) (c)
- 19. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower end. The weight stretched the wire by 1 mm. Then, the elastic energy in the wire is
- (b) 10 J (d) 0.1 J 0.2 J(c) 20 J (a)
- 20. A rigid bar of mass M is suspended symmetrically by three wires each of length l. Those at each end are of copper and the middle one is of iron. What is the ratio of their diameters $\left(\frac{D_{copper}}{D_{iron}}\right)$ if each wire is to have the same tension?

$$(a) \qquad \frac{Y_{\text{copper}}}{Y_{\text{iron}}} \qquad \qquad (b) \qquad \sqrt{\frac{Y_{\text{iron}}}{Y_{\text{copper}}}} \qquad \qquad (c) \qquad \frac{Y_{\text{iron}}^2}{Y_{\text{copper}}^2} \qquad \qquad (d) \qquad \frac{Y_{\text{iron}}}{Y_{\text{copper}}}$$

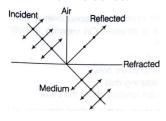
21.	A wa	vefront is											
	(a)	A surface imag	gined paral	llel and coplanar wit	th light ray	y's							
	(b)	A surface around a source such that each point of it is at a constant distance from the source											
	(c)	A surface which contains the plane of oscillations of electric field of light											
	(d)	(d) A surface which is created by medium particles oscillating in same phase											
22.	Whic	h of the following	statement	t(s) is/are correct?									
	I.	A point source emitting waves uniformly in all directions.											
	II.	In spherical w spheres	ave, the l	ocus of point whic	ch have th	ne same amplitude	e and vibra	ate in same phase a	ıre				
	III.	At a small dista	ance from	the source, a small 1	portion of	sphere can be con	sidered as p	olane wave.					
	(a)	Only I	(b)	Both I and II	(c)	Only III	(d)	All of these					
23.	The i	dea of secondary	wavelets f	or the propagation o	of wave wa	as first given by							
	(a)	Newton	(b)	Huygens	(c)	Maxwell	(d)	Fresnel					
24.	A sho	ortcoming of Huyg	gens' mod	el could not									
	(a)	Explaining the	absence o	f the backware									
	(b)	Determine the	shape of tl	he wavefront for a p	lane wave	,							
	(c)	Explain the poi	int source	emitting waves unif	formly in a	all directions							
	(d)	All of the abov	re										
25.	Ray	liverging from a p	oint sourc	e from a wavefront	that is								
	(a)	cylindrical	(b)	spherical	(c)	plane	(d)	cubical					
26.	Wave	efront is the locus	of all poin	t, where the particle	es of the m	nedium vibrate wit	h the same						
	(a)	phase	(b)	amplitude	(c)	frequency	(d)	period					
27.	Light	waves travel in v	acuum alo	ong the y-axis. Whic	h of the fo	ollowing may repr	esent the wa	avefront?					
	(a)	y = constant			(b)	x = constant							
	(c)	z = constant			(d)	x + y + z = con	stant						

28. A light wave travels through a medium carrying energy in three dimensional space. Energy spread is described by Rays originating from the source (b) Beam of light originating from source consisting of a branch of rays Wavefronts originating from source travelling in medium with speed of light (c) (d) Imagining light consisting of particles moving through medium with speed of light 29. Sound wave in air cannot be polarized because their speed is small (b) they require medium (a) (c) these are longitudinal (d) their speed is temperature dependent 30. In case of linearly polarized light, the magnitude of the electric field vector does not change with time (b) varies periodically with time (a) is parallel to the direction of propagation (c) increases and decreases linearly with time (d) 31. Which of the following statement(s) is/are correct? I. A polaroid consists of long chain molecules aligned in a particular direction. II. Electric vectors along the direction of the aligned molecule in a polaroid gets absorbed. III. An unpolarised light wave is incident on polaroid then it will get linearly polarized. Both II and III Only III All of the above (a) Only I (b) (c) (d) 32. Polaroids are used in photographic cameras (b) 3D movies cameras (a) (c) Both (a) and (b) (d) Neither (a) nor (b) 33. Figure shows the process of Incident sunlight (unpolarised)

(a) polarization by scattering


To observer

Scattered light (polarised)


(b) polarization of reflection

(c) diffraction (d) None of the above

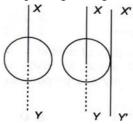
- I. Dots and arrows indicate that both polarisations are present in the incident and refracted waves.
- II. The reflected light is not linearly polarized.
- III. Transmitted intensity will be zero when the axis of the analyser is in the plane of the figure i.e. the plane of incidence.

- (a) Only I
- (b) Only II
- (c) Both I and III
- (d) Both I and II

35. The Brewster angle for the glass-air interface is 54.74°. If a ray of light going from air to glass strikes at an angle of incidence 45°, then the angle of refraction is (Given, $\tan 54.74^\circ = \sqrt{2}$)

- (a) 60°
- (b) 30°
- (c) 25°
- (d) 54.74°

36. Which of the following phenomenon is not common to sound and light waves?


- (a) Interference
- (b) Diffraction
- (c) Polarisation
- (d) Reflection

37. In case of linearly polarized light, the magnitude of the electric field vector

(a) does not change with time

- (b) varies periodically with time
- (c) increases and decreases linearly with time
- (d) is parallel to the direction of propagations

38. The moment of inertial of a circular disc of radius 2 m and mass 1 kg about an axis passing through the centre of mass but perpendicular to the plane of the disc is 2 kg-m². Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc is (see the given figure).

- (a) 8 kg-m^2
- (b) 4 kg-m^2
- (c) 10 kg-m^2
- (d) 6 kg-m^2

- 39. The moment of inertia of a circular disc about one of its dimeters is I. What will be its moment of inertia about a tangent parallel to the diameter?
 - (a) 41
- (b) 41
- (c) $\frac{5l}{2}$
- (d) 51
- The moment of inertia of a sphere of mass M and radius R about an axis passing through its centre is $\frac{2}{5}MR^2$. The 40. radius of gyration of the sphere about a parallel axis to the above and tangent to the sphere is
 - $\frac{7}{5}$ R (a)
- (b) $\frac{3}{5}$ R
- $\left(\sqrt{\frac{7}{5}}\right)$ R (c)
- (d)
- Moment of inertia of ring about its diameter is I. Then, moment of inertial about an axis passing through centre 41. perpendicular to its plane is
 - 2I (a)
- (b) $\frac{I}{2}$ (c) $\frac{3}{2}I$
- I
- The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about a tangential axis 42. perpendicular to plane of disc or ring is
 - (a) 1:2
- $\sqrt{5}:\sqrt{6}$ (b)
- (c) 2:3
- $\sqrt{3}:2$ (d)
- 43. The ratio of the radii of gyration of a circular disc to that of a circular ring, each of same mass and radius, around their respective axes is
 - $\sqrt{3}:\sqrt{2}$ (a)
- $1:\sqrt{2}$ (b)
- $\sqrt{2}:1$ (c)
- $\sqrt{2}:\sqrt{3}$ (d)
- 44. From a circular disc of radius R and mass 9 M, a small disc of radius R/3 is removed from the disc (as shown in figure) the moment of inertial of the remaining disc about an axis perpendicular to the plane of the disc and passing through O is

- 4 MR²(a)
- (b)
- $10 \, MR^2$ (c)
- $\frac{37}{9}MR^2$ (d)

45.	The moment of inertial of two equal masses each of mass m at separation L connected by a rod of mass M, about
	an axis passing through centre and perpendicular to length of rod is

$$(a) \qquad \frac{(M+3m)L^2}{12}$$

$$\frac{(M+3m)L^2}{12}$$
 (b) $\frac{(M+6m)L^2}{12}$ (c) $\frac{ML^2}{4}$

(c)
$$\frac{ML^2}{4}$$

$$(d) \qquad \frac{ML^2}{12}$$

46. What is the torque of the force
$$F = (2\hat{i} - 3\hat{j} + 4\hat{k})N$$
 acting at the point $r = (3\hat{i} + 2\hat{j} + 3\hat{k})m$ about the origin?

(a)
$$-17\hat{i} + 6\hat{j} + 13\hat{k}$$

$$-17\hat{i} + 6\hat{j} + 13\hat{k}$$
 (b) $-6\hat{i} + 6\hat{j} - 12\hat{k}$ (c) $17\hat{i} - 6\hat{j} - 13\hat{k}$ (d) $6\hat{i} + 6\hat{j} + 12\hat{k}$

(c)
$$17\hat{i} - 6\hat{j} - 13\hat{j}$$

(d)
$$6\hat{i} + 6\hat{j} + 12\hat{k}$$

47. A thin rod of mass m and length 21 is made to rotate about an axis passing through its centre and perpendicular to it. If its angular velocity changes from 0 to
$$\omega$$
 in time t, the torque acting on it is

(a)
$$\frac{\text{ml}^2 \alpha}{12\text{t}}$$

(b)

(c)

 $4\text{ml}^2\omega$ (d)

48. The instantaneous angular position of a point on a rotating wheel is given by the equation
$$Q(t) = 2t^3 - 6t^2$$

The torque on the wheel becomes zero at

(a)
$$t = 0.5 \text{ s}$$

(b)
$$t = 0.25 \text{ s}$$

(c)
$$t = 2 s$$

(d)
$$t = 1 s$$

(a)
$$r^{3/2}$$

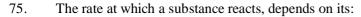
(c)
$$\sqrt{r}$$

Date: 13.11.2022

ABHIMANYU BATCH CHEMISTRY: REVISION TEST 2 (SET B)

Topics: Atomic Structure, Gaseous States and Chemical Equilibrium

51. Brackett series are produced when the electrons from the outer orbits jump to								
	(a)	2nd orbit	(b)	3rd orbit	(c)	4th orbit	(d)	5th orbit
52.	The ma	ximum number of a	ntomic o	rbitals associated with	h a princ	ipal quantum number	· 5 is	
	(a)	9	(b)	12	(c)	16	(d)	25
53.	Which	of the following spe	ecies is i	soelectronic with CO	?			
	(a)	HF	(b)	N_2	(c)	N_2^+	(d)	O_2^-
54.	Few ele	ectrons have following	ing quan	tum numbers,				
	(i)	n = 4, l = 1	(ii)	n = 4, l = 0	(iii)	n = 3, l = 2	(iv)	n = 3, l = 1
	Arrange							
	(a)	(iv) < (ii) < (iii) < 0	(i)		(b)	(ii) < (iv) < (i) < (iii))	
	(c)	(i) < (iii) < (ii) < (i	v)		(d)	(iii) < (i) < (iv) < (ii))	
55.	$Be^{2+}\ is$	isoelectronic with v	vhich of	the following ions?				
	(a)	H^+	(b)	Li^{+}	(c)	Na^+	(d)	Mg^{2+}
56.	Kinetic	energy of molecule	es is high	nest in				
	(a)	Gases	(b)	Solids	(c)	Liquids	(d)	Solutions
57.	What is	s the dominant inter	molecul	ar force or bond that i	must be	overcome in convertin	ng liquid	CH ₃ OH to gas?
	(a)	Dipole-dipole inter	raction		(b)	Covalent bonds		
	(c)	London dispersion	forces		(d)	Hydrogen bonding		



58.	Which	of the following ex	hibits the	e weakest intermolect	ular forc	es?		
	(a)	NH_3	(b)	HCl	(c)	Не	(d)	H_2O
59.	The ter	mperature at which	Celsius a	and Fahrenheit scales	give the	same reading is		
	(a)	0° C	(b)	32° F	(c)	−40° C	(d)	40° C
60.	When g	gases are heated from	m 20° to	40° C at constant pre	essure, tl	neir volumes		
	(a)	increase by the sar	ne magn	itude	(b)	become double		
	(c)	increase in the ratio	o of thei	r molecular masses	(d)	increase but to diffe	rent exte	ent
61.	Maxim	um number of elect	rons pre	sent in N shell is				
	(a)	18	(b)	32	(c)	2	(d)	8
62.	Neon (Z = 10) consists of						
	(a)	9 Electrons	(b)	12 Electrons	(c)	5 Electrons	(d)	10 Electrons
63.	In pota	ssium the order of e	nergy le	vel is				
	(a)	3s, 3d	(b)	3p, 4s	(c)	4s, 4p	(d)	4s, 3d
64.	The He	eisenberg uncertaint	y princip	ple can be applied to				
	(a)	Protons only			(b)	Electrons only		
	(c)	Neutrons only			(d)	All material objects	in motio	on
65.	Electro	nic configuration of	H- is					
	(a)	$1s^0$	(b)	$1s^1$	(c)	$1s^2$	(d)	$1s^1, 2s^1$
66.	The co	rrect ground state el	ectronic	configuration of Cr a	ntom is			
	(a)	[Arl3d ⁵ 4s ¹	(b)	$3d^44s^2$	(c)	$3d^{6}4s^{0}$	(d)	$4d^{5}5s^{1}$

67.	The e	lement with $Z = 20$	is					
	(a)	an alkali metal			(b)	an alkaline earth m	etal	
	(c)	a halogen			(d)	an inert gas		
68.	The n	umber of electrons	shared b	y each atom of nitrog	en in nit	rogen molecule is		
	(a)	2	(b)	6	(c)	3	(d)	4
69.	The to	otal number of elect	rons pre	sent in 8 g of methano	e is			
	(a)	4.02×10^{18}	(b)	3.01×10^{24}	(c)	3.01×10^{22}	(d)	2.51×10^{24}
70.	One o	of the basic assumpt	ions of I	Bohr's theory is				
	(a)	linear momentum	n is quan	ntized				
	(b)	angular momentu	ım is qu	antized				
	(c)	electrons do not f	eel nucl	ear attractions in stati	onary or	bits		
	(d)	stationary orbits	have no	position momentum u	ıncertain	nty		
71.	Which	n of the following e	xpressio	on at constant pressure	represe	nts Charle's law.		
	(a)	$V \propto \frac{1}{T}$	(b)	$V \propto \frac{1}{T^2}$	(c)	$V \propto T$	(d)	$V \propto d$
72.	4.4 g	of a gas at STP occi	upies a v	volume of 2.24 L, the	gas can	be		
	(a)	O_2	(b)	CO	(c)	NO_2	(d)	CO_2
73.	Real g	gases show deviation	ns from	ideal behaviour when	l			
	(a)	temperature is lo	w and p	ressure is high	(b)	temperature is high	and pre	essure is low
	(c)	both temperature	and pre	ssure are low	(d)	both temperature a	nd press	ure are high
74.		iners A and B have			ime and	temperature of A are	e all twi	ce as that B, then the
	(a)	1:2	(b)	2:1	(c)	1:4	(d)	4:1

- active mass (a)
- (b) molecular mass
- (c) equivalent mass
- (d) total volume

76. Equilibrium constant for the reaction,
$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)}$$
, is correctly given by the expression:

(a)
$$K = \frac{[NOCl]^2}{[NO]^2[Cl_*]}$$
 (b)

$$K = \frac{[2NOCl]}{[2NO][Cl_2]}$$

$$K = \frac{[NOCl]^2}{[NO]^2[Cl_2]}$$
 (b)
$$K = \frac{[2NOCl]}{[2NO][Cl_2]}$$
 (c)
$$K = \frac{[NO]^2 + [Cl_2]}{[NOCl]}$$
 (d)
$$K = \frac{[NO]^2[Cl_2]}{[NOCl]^2}$$

$$K = \frac{[NO]^2 [Cl_2]}{[NOCl]^2}$$

77. The equilibrium constants of the reactions,

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$$

and
$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

are K_1 and K_2 respectively. The relationship between K_1 and K_2 is:

- $K_1 = K_2$ (a)
- (b)
- $K_2^2 = K_1$ (c) $K_1^2 = K_2$ (d) $K_2 = \sqrt{K_1}$

78. Consider the following equilibrium

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{K_1} SO_{3(g)}$$
; $2SO_{3(g)} \xrightarrow{K_2} 2SO_{2(g)} + O_{2(g)}$

What is the relation between K_1 and K_2 ?

$$(a) K_1 = \frac{1}{K_2}$$

(b)
$$K_1 = \frac{1}{\sqrt{K_2}}$$

$$(c) K_1 = K_2$$

$$K_1 = \frac{1}{K_2} \hspace{1cm} (b) \hspace{1cm} K_1 = \frac{1}{\sqrt{K_2}} \hspace{1cm} (c) \hspace{1cm} K_1 = K_2 \hspace{1cm} (d) \hspace{1cm} K_1 = \frac{1}{K_2^2}$$

79. For a system, A + 2B \rightleftharpoons C, the equilibrium concentrations are [A] = 0.06, [B] = 0.12 and [C] = 0.216. The K_C for the relation is:

- 125 (a)
- (b) 415
- 4×10^{-3} (c)
- (d) 250

80. A reversible reaction is one which

> proceeds in one direction (a)

(b) proceeds in both directions

(c) proceeds spontaneously (d) all the statements are wrong

81.	An example of reversible reaction is	S

(a)
$$Pb(NO_3)_2 + 2NaI = PbI_2 + 2NaNO_3$$

(b)
$$AgNO_3 + HCl = AgCl + HNO_3$$

(c)
$$2Na + 2H_2O = 2NaOH + H_2$$

(d)
$$KNO_3 + NaCl = KCl + NaNO_3$$

82. Which one of the following is not a reversible reaction?

(a)
$$2HI_{(g)} = H_{2(g)} + I_{2(g)}$$

(b)
$$PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$$

(c)
$$2KClO_{3(s)} = 2KCl_{(s)} + 3O_{2(g)}$$

(d)
$$CaCO_{3(s)} = CaO_{(s)} + CO_{2(g)}$$

83. Active mass is defined as:

- (a) number of g equivalent per unit volume
- (b) number of g mol per litre
- (c) amount of substance in gram per unit volume
- (d) number of g mole in 100 litre
- 84. 8.50 g of NH_3 is present in 250 mL volume. Its active mass is :

(a)
$$1.0 \text{ ML}^{-1}$$

(b)
$$0.5 \text{ ML}^{-1}$$

(c)
$$1.5 \text{ ML}^{-1}$$

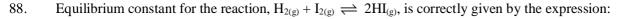
(d)
$$2.0 \text{ ML}^{-1}$$

85. A chemical reaction, $A \rightleftharpoons B$, is said to be in equilibrium when:

- (a) rate of forward reaction is equal to rate of backward reaction
- (b) conversion of A to B is only 50% complete
- (c) complete conversion of A to B has taken place
- (d) only 25% conversion of A to B has taken place

86. The reaction between barium chloride and sodium sulphate goes to completion because

- (a) barium sulphate is almost insoluble
- (b) the solubility of barium chloride decreases
- (c) lattice energy of barium sulphate is very high
- (d) the reaction is irreversible in nature


87. For the reaction, $A + 2B \rightleftharpoons C$, the expression for equilibrium constant is:

(a)
$$\frac{[A][B]^2}{[C]}$$

(b)
$$\frac{[A][B]}{[C]}$$

(c)
$$\frac{[C]}{[A][B]^2}$$

$$(d) \qquad \frac{[C]}{[2B][A]}$$

(a)
$$K_C = \frac{[H_2][I_2]}{[HI]}$$

(b)
$$K_C = \frac{[}{[H]}$$

$$K_{C} = \frac{[H_{2}][I_{2}]}{[HI]}$$
 (b) $K_{C} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$ (c) $K_{C} = \frac{[HI]}{[H_{2}][I_{2}]}$ (d) $K_{C} = \frac{[2HI]}{[H_{2}][I_{2}]}$

(d)
$$K_C = \frac{[2HI]}{[H_2][I_2]}$$

For the system, $3A + 2B \rightleftharpoons C$ the expression for equilibrium constant is: 89.

(a)
$$\frac{[A]^3[B]^2}{[C]}$$

(b)
$$\frac{[C]}{[A]^2[B]^2}$$

(b)
$$\frac{[C]}{[A]^2[B]^2}$$
 (c) $\frac{[A]^2[B]^3}{[C]}$

(d)
$$\frac{[C]}{[A][B]}$$

For the reaction, $2NO_{2(g)} \rightleftharpoons 2NO_{(g)} + O_{2(g)}, \ K_C = 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{for the reaction}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{at } 185^{\circ} \ \text{C}, \ \text{the value of } lK_C \ \text{constant}, \ NO_{(g)} \rightleftharpoons 1.8 \times 10^{-6} \ \text{c}$ 90. $NO_{(g)} + 1/2O_{2(g)}$, at the same temperature is

(a)
$$1.34 \times 10^{-3}$$

(b)
$$1.8 \times 10^{-6}$$

(c)
$$0.9 \times 10^{-3}$$

(d)
$$1.8 \times 10^6$$

91. Dalton's law of partial pressures will not hold good for which of the following?

(a)
$$H_2 + O_2 + CO_2$$

(b)
$$N_2 + HBr + Cl_2$$

(c)
$$Cl_2 + NH_3 + HBr$$

(d)
$$NH_3 + O_2 + Cl_2$$

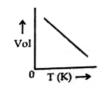
92. Which of the following gas will have highest rate of diffusion?

(b)
$$N_2$$

(c)
$$CO_2$$

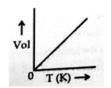
(d)
$$O_2$$

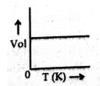
93. Graph between P and V at constant temperature is


> (a) straight

(a)

(b) curved increasing


(c) straight line with slope (d) parabolic curve decreasing


94. The correct representation of Charles's law is given

(c)

Degree Fahrenheit

(c)

95.	Which	nich of the following shows explicitly the relationship between Boyle's law and Charles's law?								
	(a)	$\frac{P_1}{P_2} = \frac{T_1}{T_2}$	(b)	PV = K	(c)	$\frac{P_2}{P_1} = \frac{V_1}{V_2}$	(d)	$\frac{V_2}{V_1} = \frac{P_1}{P_2} \times \frac{T_2}{T_1}$		
96.	If the a	bsolute temperature	e of gas i	s doubled and the pre	essure is	reduced to one-half,	the volu	me of the gas will		
	(a)	Remain unchange	d		(b)	Be doubled				
	(c)	Increase four-fold			(d)	Be reduced to 1/4 th	ı			
97.	There i	is 10 litre of a gas a	t STP. V	Which of the followin	g new co	onditions keep the vo	olume co	nstant?		
	(a)	273 K and 2 atm p	pressure		(b)	273° C and 2 atm p	pressure			
	(c)	546° C and 0.5 atr	m pressu	re	(d)	0° C and 0.0 atm p	ressure			
98.	_	xygen and 3 g of hy xture will be nearly	-	are mixed and kept at	760 mn	n pressure and 0° C.	The total	l volume occupied by		
	(a)	22.4 L	(b)	33.6 L	(c)	448 L	(d)	44800 mL		
99.	At con	stant temperature, f	or a give	n mass of an ideal ga	ıs					
	(a)	The ratio of pressu	ure and v	volume always remair	ns consta	nnt				
	(b)	Volume always re	mains co	onstant						
	(c)	Pressure always re	emains c	onstant						
	(d)	The product of pro	essure ar	nd volume always rem	nains cor	nstant				
100.	At con	stant pressure, the v	olume o	f fixed mass of an ide	eal gas is	directly proportion	al toa			
	(a)	Absolute temperat	ture		(b)	Degree centigrade				

Space for Rough Work

(d)

None

Max Marks: 100 Date: 13.11.2022

ABHIMANYU BATCH PHYSICS: REVISION TEST-2 (SET B) ANSWER KEY

Topic: Wave Optics + Rotational Motion + Elasticity

1.	(c)	2.	(b)	3.	(d)	4.	(d)	5.	(b)
6.	(b)	7.	(a)	8.	(a)	9.	(b)	10.	(d)
11.	(d)	12.	(b)	13.	(d)	14.	(a)	15.	(a)
16.	(a)	17.	(b)	18.	(a)	19.	(d)	20.	(b)
21.	(d)	22.	(b)	23.	(b)	24.	(a)	25.	(b)
26.	(a)	27.	(a)	28.	(c)	29.	(c)	30.	(b)
31.	(d)	32.	(c)	33.	(a)	34.	(c)	35.	(b)
36.	(c)	37.	(b)	38.	(d)	39.	(d)	40.	(c)
41.	(a)	42.	(d)	43.	(b)	44.	(a)	45.	(b)
46.	(c)	47.	(b)	48.	(d)	49.	(c)	50.	(b)

CHEMISTRY: REVISION TEST 2 (SET B) ANSWER KEY Topics: Atomic Structure, Gaseous States and Chemical Equilibrium

	1	1	ı	1	1	ı	ı	ı	
51.	(c)	52.	(d)	53.	(b)	54.	(a)	55.	(b)
56.	(a)	57.	(d)	58.	(c)	59.	(c)	60.	(d)
61.	(b)	62.	(d)	63.	(d)	64.	(d)	65.	(b)
66.	(a)	67.	(b)	68.	(b)	69.	(d)	70.	(b)
71.	(c)	72.	(d)	73.	(a)	74.	(a)	75.	(a)
76.	(a)	77.	(c)	78.	(b)	79.	(d)	80.	(b)
81.	(d)	82.	(c)	83.	(b)	84.	(d)	85.	(a)
86.	(d)	87.	(c)	88.	(b)	89.	(b)	90.	(a)
91.	(c)	92.	(a)	93.	(d)	94.	(b)	95.	(d)
96.	(c)	97.	(b)	98.	(d)	99.	(d)	100.	(a)